IRF8 mutations and human dendritic-cell immunodeficiency.
نویسندگان
چکیده
BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).
منابع مشابه
Dendritic cell analysis in primary immunodeficiency
PURPOSE OF REVIEW Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo.Given their central role in infection, autoimmunity, and m...
متن کاملFunctional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation.
We have previously reported on a unique patient in whom homozygosity for a mutation at IRF8 (IRF8(K108E)) causes a severe immunodeficiency. Laboratory evaluation revealed a highly unusual myeloid compartment, remarkable for the complete absence of CD141 and CD161 monocytes, absence of CD11c1 conventional dendritic cells (DCs) and CD11c1/CD1231 plasmacytoid DCs, and striking granulocytic hyperpl...
متن کاملThe transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia.
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8(-/-) mice develop a CML-like dise...
متن کاملMolecular and Cellular Pathobiology The Transcription Factor IRF8 Counteracts BCR-ABL to Rescue Dendritic Cell Development in Chronic Myelogenous Leukemia
BCR-ABL tyrosine kinase inhibitors (TKI) have dramatically improved therapy for chronic myelogenous leukemia (CML). However, several problems leading to TKI resistance still impede a complete cure of this disease. IFN regulatory factor-8 (IRF8) is a transcription factor essential for the development and functions of immune cells, including dendritic cells. Irf8 / mice develop a CML-like disease...
متن کاملBatf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development.
Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New England journal of medicine
دوره 365 2 شماره
صفحات -
تاریخ انتشار 2011